SOL Broadening by Edge Turbulence:

Experiment and Theory

P.H. Diamond

UCSD

TTF 2022 – Santa Rosa

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Collaborators:

Xu Chu⁽¹⁾, **Ting Wu**⁽²⁾, Z.B. Guo⁽³⁾, R. Hong^(4,5), M. Xu⁽²⁾, C. Hidalgo⁽⁶⁾, and HI -2A Team

(1) Univ. CAS; (2) SWIP; (3) PKU; (4) UCLA; (5) DIII-D; (6) Ciemat

Acknowledge:

Jose Boedo, R. Goldston, Zheng Yan, G. Tynan, X.-Q. Xu, Nami Li

- Background: SOL Width Problem and the Physics of the Boundary Layer
- Turbulence Production Ratio and its Implications
- Calculating the Scale of the Spreading-Driven SOL
- Open Issues and Future Plans

Background

- Conventional Wisdom of SOL:
 - (cf: Stangeby...)
 - Turbulent Boundary Layer, ala' Blasius
 - $~\delta \sim (D\tau)^{1/2}, \tau \approx L_c/V_{th}$
 - *D* ↔ local production by SOL instability process
 → usual approach
- Features:
 - Open lines \rightarrow dwell time τ limited by transit, conduction
 - Intermittent \rightarrow "Blobs" etc.

Background, cont'd

• But... Heuristic Drift (HD) Model (Goldston +)

$$-V \sim V_{
m Curv}$$
 , $\tau \sim L_c/V_{thi}$, $\lambda \sim \epsilon \rho_{\theta i}$

- Pathetically small
- Pessimistic B_{θ} scaling
- Fits lots of data.... (Brunner '18, Silvagni '20)
- Why does neoclassical work? \rightarrow ExB shear suppresses SOL modes i.e. $\gamma_{\text{interchange}} \sim \frac{c_s}{(p-1)^{\frac{1}{2}}} - \frac{\frac{3T_{edge}}{|e|\lambda^2}}{|e|\lambda^2}$

Background, cont'd

• The Existential Problem... (Kikuchi, Sonoma TTF):

```
Desire \langle Confinement \rightarrow H-mode \leftarrow \rightarrow ExB shear
```

Power Handling \rightarrow broader heat load, etc

How reconcile?

- Spurred:
 - Exploration of turbulent boundary states with improved confinement: Grassy ELM,
 WPQHM, I-mode, Neg. D ...
 N.B. What of ITB + L-mode edge?

 \rightarrow Both to be good !

- Simulations, Visualizations (XGC, BOUT...)
- But... What's the Physics ??

SOL BL Problem

• NOT ala' Landau + Lifshitz

Surface

Classic: Heat flux driven BL, Plumes etc

→ Turbulence Spreading (Hahm, P.D., Gurcan, ...)

- SOL Excitation:
 - Turbulence energy influx from pedestal
 - Local production

SOL: Turbulent Energy Flux <u>and</u> Heat Flux Drive

N.B.: Includes "blobs" c.f. Manz + Grenfell + for direction flux

 $Q \rightarrow Q$ Ratio? spreading from pedestal I + local production

Physics Issues – Part I

- Measure and Characterize Turbulence Energy Flux at LCFS
- Determine Relative Contributions of :
 - Influx/Spreading thru LCFS
 - SOL Production

$$R_a \rightarrow \text{Production Ratio}$$

- Trends in λ_q vs : ExB shear, 'Blob' Fraction...
- Question: Is SOL turbulence usually spreading driven?
- \rightarrow Phenomenology... (see Ting Wu +, in preparation)

Experiments and Data Set

- HL-2A limited OH plasmas
- Reciprocating probe array $\leftarrow \rightarrow$ Outboard mid-plane
- $q_{\parallel} = \gamma J_{sat} T_e$, $\gamma \equiv$ sheath transmission coefficient
- Database: 'Garden Variety OH' ~ 150 kA, 1.4T
- 4 parameter subgroups $\bigcirc_{\text{red circle}}$ + $\bigotimes_{\text{blue cross}}$ green diamond

black triangle

• Similar, with $\lambda_q \gg \lambda_{HD}$, except: black triangles \triangle

-
$$\lambda_q > \lambda_{HD}$$
 , not \gg

- Significant GAM activity \rightarrow stronger ExB shear

λ_q Trends 1 – Fluctuation Levels and Shearing

- λ_q increases for increasing fluctuation intensity at <u>lcfs</u>
- λ_q decreases for increasing ExB shear at <u>lcfs</u>

λ_q Trends 2 – Particle Flux and Diffusion

- λ_q increases for increasing <u>edge</u> Γ_n
- λ_q decreases for increasing edge D
- ? Saturation

 λ_q Trends 3 – Spreading

- $\Gamma_{\varepsilon} = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow \text{flux of turbulence internal energy thru lcfs}$
- Direct measurement of local spreading flux
- · Consistent with expected trend of expanded SOL width due to spreading across lcfs

SOL Fluctuation Energy – Production Ratio

1 Fluid •
$$\rho\left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V}\right) = -\nabla P + \frac{1}{c}\vec{J} \times \vec{B} + \rho g\hat{r}$$

 $\vec{V} \cdot \vec{V} = 0, \ \tilde{P} + \frac{\vec{B}_0 \cdot \vec{B}}{4\pi} \approx 0$ SOL interchange

•
$$\partial_t (KE)_{SOL} = -\int_0^\lambda dr \, \nabla \cdot \Gamma_E + \int_0^\lambda dr \left[\frac{c_s^2}{R} \left\langle \frac{\tilde{V}_r \tilde{n}}{n_0} \right\rangle - \left\langle \tilde{V}_r \tilde{V}_\perp \right\rangle \frac{\partial}{\partial r} \left\langle V_\perp \right\rangle \right]$$

$$= -\Gamma_E \left|_{\lambda_q} + \Gamma_E \right|_{lcfs} + [SOL Integrated local production]$$
Fluctuation Energy Influx to SOL

• $\Gamma_E = \langle \tilde{V}_r \tilde{V}^2 \rangle \approx c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow \text{amenable to measurement}$ Take: KE flux ~ Int. Energy Flux

this gives ...

Production Ratio, Cont'd

$$R_a = c_s^2 \left\langle \tilde{V}_r \left(\tilde{n}/n_0 \right)^2 \right\rangle \Big|_{\text{lcfs}} / \int_0^\lambda dr \frac{c_s^2}{R} \left\langle \tilde{V}_r \tilde{n}/n_0 \right\rangle$$

- Ratio of fluctuation energy influx from edge i.e. spreading drive to net production in SOL
- $-R_a < 1 \rightarrow$ SOL locally driven
- $-R_a \gg 1 \rightarrow$ SOL is spreading driven
- Quantitative measurement by Langmuir probes
- N.B. very simple; likely low estimate

Production Ratio - Measurements

$$R_a = \frac{\text{Fluctuation Energy Influx}}{\text{SOL Local Production}}$$

- Observe:
 - $-\lambda_q$ increases with R_a
 - Most cases $R_a > 1$
 - Broad distribution R_a values
 - Low R_a values \leftrightarrow strong ExB shear

N.B. Non-trivial, as shear \leftrightarrow production, also

- Also:
 - Some R_a < 0 cases → inward spreading ↔ local measurement trend outward
 - Some <u>very</u> large R_a values

Production Ratio vs ExB Shear 1

- Low values of $|R_a|$ at high V'_E
- But why?

$$R_a = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle |_{\text{lcfs}} / \int_0^\lambda dr \frac{c_s^2}{R} \langle \tilde{V}_r \tilde{n}/n_0 \rangle$$

→ Expect shear inhibits <u>both</u> spreading and transport flux?

Production Ratio vs ExB Shear 2

- Both spreading and local production drop due high V'_E
- But spreading x (1/8) vs Production x (1/2)
- → Spreading flux significantly more sensitive to V'_E than transport flux
- \leftarrow > Triplet vs quadratic > Phases?

Large $R_a \rightarrow$ 'Blobs' ?!

- What of the large R_a values?
- Suspect Structure Emission i.e. "blobs" !?
- Test:

- Conditional averaging (i.e. threshold $\tilde{n} > 2\tilde{n}_{rms} \rightarrow$ "blob")
- Threshold arbitrary \rightarrow setting based upon previous studies
- Compute R_a , Γ etc. with conditionally averaged quantities

Large $R_a \rightarrow \lambda_q$ increases with 'blob' fraction

• Large R_a cases \leftrightarrow larger 'blob fraction' of flux

 \leftrightarrow spreading encompasses 'blobs' (c.f. Manz +)

• λ_q increases with Γ_b/Γ_{Tot}

High ExB shear cases → low 'blob' fraction

Time Scales

• Spreading rates: $\omega_s \approx -\partial_r \langle \tilde{V}_r \tilde{n} \tilde{n} \rangle / \langle \tilde{n}^2 \rangle$

characteristic rate of spreading (Manz +)

• Shearing rate V'_E

- λ_q broadens for large ω_s
- Stronger shear reduces spreading rate

Partial Summary

- Significant, mostly outward, spreading measured at lcfs
- Identified and calculated production ratio

 $R_a =$ (spreading influx) / (local production)

- Most cases: $R_a > 1 \rightarrow$ spreading dominant player in SOL energetics
- ExB shear reduces $R_a \leftarrow \Rightarrow$ spreading more sensitive to V'_E than transport and production
- High R_a , spreading $\leftarrow \rightarrow$ 'blob' dominated dynamics

YES → SOL turbulence usually spreading driven!

"The conventional wisdom is little more than convention" - JKG

Physics Issues – Part II

N.B. Simulations need theoretical guidance!

- How calculate SOL width for turbulent pedestal but stable SOL?
 - spreading penetration depth?
 - recover HD in turbulence \rightarrow 0 limit
- Scaling and cross-over of λ_q vs HD model?
- Effect Barrier?
- Question: Reconcile SOL Broadening and Confinement?
- → Theory (Chu, P.D., Guo NF 2022)

Model 1 – Stable SOL

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing
- Need $\lambda/\lambda_{HD} \gg 1$ for SOL instability. $V'_E \approx \frac{3T_e}{|e|\lambda^2}$

Model 2 – Multiple Adjacent Regions

• "Box Model" – see Z.B. Guo, P.D.

- Key Point:
 - Spreading flux from pedestal can enter stable SOL
 - Depth of penetration → extent of SOL broadening

Width of Stable SOL

• Fluid particle:
$$\frac{dr}{dt} = V_{Dr} + \tilde{V}$$

• Dwell time: τ_{\parallel}
• $\int \delta^2 = \langle (\int (V_D + \tilde{V}) dt) (\int (V_D + \tilde{V}) dt) \rangle$
 $\langle (\text{step})^2 \rangle = V_D^2 \tau_{\parallel}^2 + \langle \tilde{V}^2 \rangle \tau_c \tau_{\parallel}$ correlation time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ correlation time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ correlation time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ correlation time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ furbulence energy density
• So $\lambda = [\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2]^{1/2} \rightarrow \text{SOL width}$ [Effects add in quadrature]

• How compute ε ? \rightarrow turbulence energy !

Calculating the SOL Turbulence Energy 1

N.B.: Can explore different NL processes

- $\kappa \epsilon$ type model:
- $\partial_t \varepsilon = \gamma \varepsilon \sigma \varepsilon^{1+\kappa} \partial_x \Gamma_e \longrightarrow$ spreading turbulence energy flux (cf Part1) growth $\gamma < 0$ here NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$
- Integrate $\int_0^{\lambda} \cdots$ (Quantities layer averaged)

•
$$\Gamma_{e,0} = \lambda_e |\gamma|\varepsilon + \sigma\varepsilon^{1+\kappa} \rightarrow \text{Linear + NL damping } (\gamma < 0)$$

separatrix intensity flux

• $\Gamma_{e,0}$ specifies SOL turbulence drive

SOL width Broadening vs $\Gamma_{e,0}$

· SOL width broadens due spreading

 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q = 4, \beta = 0.001, \kappa = 0.5, \sigma = 0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - <u>Weak</u> broadening regime → shear
 - Cross-over regime
 - Strong broadening regime
 - ➔ NL damping vs spreading

Cross-over for:

 $\langle \tilde{V}^2 \rangle \sim V_D^2 \rightarrow \text{minimal } \Gamma_{0,e}$

Computing the Turbulence Energy Flux 1

- Need consider pedestal to compute $\Gamma_{e,0}$
- Two elements

Does another
trade-off loom?-- Pedestal Turbulence: Drift wave? Ballooning?-- Effect of transport barrier $\leftarrow \rightarrow$ ExB shear layer

• Key Point: shearing limits correlation in turbulent energy flux

i.e.
$$\Gamma_{e,0} \approx -\tau_c \kappa \partial_x \kappa \approx \tau_c \kappa^2 / w_{ped}$$
 (Hahm, PD +)
ped turbulence correlation time \rightarrow strongly sensitive to shearing intensity

Computing the Turbulence Energy Flux 2

 $\rightarrow \lambda/\lambda_{HD}$ vs $|e|\hat{\phi}/T_e$ (pedestal)

fluctuation level

Can broaden layer at acceptable

→

- Familiar analysis: ٠
 - Kubo formalism for D

Computing the Turbulence Energy Flux 3

- SOL broadening achieveable at tolerable pedestal fluctuation levels
 - DW levels required scale ~ $(\rho_i/R)^{1/2} \rightarrow$ favorable
 - Grassy ballooning turbulence also can broaden SOL
 - Sensitivity analysis → <u>Cross-over</u> determined primiarly by <u>linear</u> <u>damping</u>. Conclusion not sensitive to NL saturation.

Partial Summary

Turbulent scattering broadens stable SOL

$$\lambda = \left(\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right)^{1/2}$$

Separatrix turbulence energy flux specifies SOL turbulence drive

$$\Gamma_{0,e} = \lambda_e |\gamma|\varepsilon + \sigma \varepsilon^{1+\kappa}$$

Broadening increases with $\Gamma_{0,e}$ cross-over for $\langle \tilde{V}^2 \rangle \sim V_D^2$

Non-trivial dependence

• $\Gamma_{0,e}$ must overcome shear layer barrier

Yes – can broaden SOL to $\lambda/\lambda_{MHD} > 1$ at tolerable fluctuation levels Further analysis needed

Broader Messages

- Turbulence spreading is important even dominant process in setting SOL width. $\Gamma_{0,e}$ is critical element. $\lambda = \lambda(\Gamma_{0,e}, \text{parameters})$
- Production Ratio R_a merits study and characterization
- Spreading is important saturation meachanism for pedestal turbulence
- Simulation should stress calculation and characterization of turbulence energy flux over visualizations and front propagation studies.

Critical questions include local vs FS avg, channels and barrier interaction.

Open Issues

- Quantify $\lambda = \lambda \left(\frac{|e|\hat{\phi}|}{T} \Big|_{ped} \right)$ dependence
- Structure of Flux-Gradient relation for turbulence energy?
- Phase relation physics for intensity flux? crucial to ExB shear effects
- Kinetics $\rightarrow \langle \tilde{V}_r \delta f \delta f \rangle$, Local vs Flux-Surface Average, EM
- SOL Diffusive? → Intermittency('Blob'), Dwell Time ?
- SOL → Pedestal Spreading ? ← → HDL (Goldston) ?
 - i.e. Tail wags Dog ? Both wagging ? \rightarrow Basic simulation, experiment ?

Counter-propagating pulses ?

Thank You ! Good to be back in person !

Supported by U.S. Dept. of Energy under Award Number DE-FG02-04ER54738

Back-Up

 $\lambda_{n_e} \sim \lambda_{T_e} \sim \lambda_{P_e}$

All SOL profiles scales comparable